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1 Introduction 
This study continues previous investigations into the 
viability of using a general purpose format such as HDF5 
for preserving engineering data.1 

The previous effort focused on two product model data 
objects: Cartesian points and B-splines [1].  This study 
investigates another type of data object that presents 
scalability challenges: finite element modeling (FEM) 
data.  FEM is a common method used in engineering 
design and can produce enormous amount of data.  The 
main goal of this investigation is to explore how HDF5 
might provide effective storage to meet the needs of ever-
increasing growth of data volumes. 

Using two sets of data collections, the objectives of this 
work are to (a) map finite element representations 
together with their related entities into HDF objects and 
structures, (b) explore different ways of mapping these 
data into HDF5 based on the finite element STEP data 
characteristics and HDF5 features, and (c) assess the 
benefit and costs of such HDF5 storage mappings. 

2 Background 
Current formats for managing finite element modeling 
data are based on the STEP format2.  The semantics of 
data stored in STEP is described in the EXPRESS data 
description language, an object-oriented information 
modeling language [2].  

Currently, EXPRESS objects are instantiated in STEP as 
ASCII text.  Alternative XML implementations are also 
available [3].  STEP is a successful ISO standard[4], and is 
well accepted and supported.  However, ASCII-based 
                                                           
1 This work is part of a project at the National Center for 
Supercomputing Applications (NCSA) and The HDF 
Group, supported by the National Archives and Records 
Administration (NARA), to investigate the use of 
scientific data formats to support long term preservation 
of high volume, complex federal records. 
2 STEP (STandard for the Exchange of Product data) 
refers to the “International Standard ISO 10303 Industrial 
systems and integration - Product data representation and 
exchange.”   

implementations do not adapt well for highly voluminous, 
complex data, such as data used in applications like finite 
element analysis and computational fluid dynamics.  
STEP is also not suitable for the heterogeneous 
supporting data found in collections of product model 
data, such as digital photographs, blueprints, and 
formatted text. 

These shortcomings of STEP have led to a number of 
attempts to develop an alternate binary format.  One such 
effort is EuroSTEP’s EXPRESS/Binary Project [4], 
whose goal is to “standardize a mapping into a more 
efficient (i.e. binary) file representation” for EXPRESS 
data.  It is hoped that this alternate file representation 
may satisfy the needs of several applications, such as 
Thermal Analysis and Finite Element Analysis, which 
utilize very large datasets for their information models.  
The EuroSTEP Project identified a number of criteria for 
such a new file representation: 

• Available everywhere – open source, free 
• Architecture-independent specification and 

extensibility 
• Platform-independent implementation 
• General purpose capability 

− Custom Structure 
Definition/Representation 

− Alignment with EXPRESS (datatypes, 
structures, rules) 

− Support for mixed content 

• Fast read/write performance 
• Out-of-core data access (partial I/O) 
• Large files support, compression 
• Applicability for long term archiving 
• Pedigree, viability, widespread usage and some 

standardization 
• Support, training, high quality documentation 

The EXPRESS/Binary Project selected HDF5 
(Hierarchical Data Format) as the binary format for initial 
investigation.  The project has developed mappings from 
EXPRESS to HDF5, and has recently presented a 
prototype of these mappings to the International 
Standards Organization (ISO). 

The work reported here builds on the EuroSTEP Project, 
and was done in collaboration with the Project.  It uses 
some of the EXPRESS-HDF5 mappings to investigate 
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the viability of using HDF5 as a binary format for storing 
finite element data. 

3 Mapping of EXPRESS Data to HDF5 
The two basic constructs of the EXPRESS language are 
entities and types.  Types in EXPRESS include 
primitive types such as integer and string, as well as 
enumeration, aggregation, and select types.  An entity, which 
represents a real-world object, is composed of named 
properties called attributes, each of which has an 
associated data type.  An instance of an entity has an 
identifier as well as values associated with each declared 
attribute.  A schema is a collection of EXPRESS entity 
declarations while a data population consists of entity 
instances that conform to the entity data type 
declarations. 

HDF5 is a general purpose file format for storing large or 
complex volumes of scientific data.  It consists of two 
primary objects: datasets and groups. “A dataset is 
essentially a multidimensional array of data elements, and 
a group is a structure for organizing objects in an HDF5 
file. Datasets and groups can be stored in different ways 
so as to improve storage or I/O efficiency, and both can 
have associated metadata in the form of HDF5 
attributes.  Using these as basic building blocks, one can 
create and store almost any kind of scientific data 
structure in HDF5, such as images, arrays of vectors, and 
structured and unstructured grids.” [5] 

The representation of EXPRESS-driven data using 
HDF5 is specified by relating EXPRESS data concepts to 
HDF5 data concepts.  Each entity declaration is 
represented as an HDF5 compound data type with the 
corresponding HDF5 data types for its attributes.  The 
set of instances of an EXPRESS entity type is treated as a 
dataset in HDF5 and each population of an EXPRESS 
schema is represented as an HDF5 group.  Details of 
mapping from EXPRESS data to HDF5 are described in 
EXPRESS Data as HDF5 Mapping Specification  Version 
0.5.  [4] 

4 Testing Data 

4.1 Collections 

Two sets of data from STEP files are used for this study: 

A. The first set, CONROD.stp (henceforth 
“CONROD”), is populated based on the 
structural_analysis_design schema and contains 
finite element data for 10-node quadratic 
tetrahedra.  The CONROD STEP file is about 
1,206K (kilobytes). 

B. The second set, hull_mesh_1.stp (henceforth 
“HULL”), is also populated based on the 

structural_analysis_design schema.  It contains 
finite element data for 3-node linear triangles 
and 4-node linear quadrilaterals.  The HULL 
STEP file is 1,368K.   

4.2 Data characteristics 

To investigate the appropriateness of HDF as the binary 
format for the finite element data, 
VOLUME_3D_ELEMENT_REPRESENTATION in the 
CONROD collection and 
SURFACE_3D_ELEMENT_REPRESENTATION in the 
HULL collection are identified. The former 
representations are for 10-node quadratic tetrahedra and 
the latter are for 3-node linear triangles and 4-node linear 
quadrilaterals. 

4.3 Testing scalability with larger files 

From an HDF5 perspective, the CONROD and HULL 
files are relatively small.  Indeed both are small enough 
that they can easily fit into the memory of most 
computers today.  Since the purpose of this study is to 
investigate the use of HDF5 for high volume FEM data, 
two larger files were created.   

These two files are based on the CONROD and HULL 
files, and were created by increasing by a factor of 100 the 
number of those entity instances that seemed most likely 
to increase when the resolution of a FEM would increase, 
namely Cartesian points, nodes, and elements.  The values 
stored for these entities were created with a random 
number generator.  Table 2 lists the affected elements.  

The larger files are referred to as CONROD* and 
HULL*. 

5 Storage Formats in HDF 
As observed from the above tables, node, 
surface_3d_element_representation, 
volume_3d_element_representation, cartesian_point 
and direction are entities which have relatively larger 
number of instances in either collection.  They are 
selected for applying the HDF5 storage methods 
discussed below because some of their attributes are of 
significance in showing the appropriateness of HDF as 
the binary format for conversion.  All five entities are also 
selected to be stored in HDF with compression and 
without compression for this study. 

5.1 Method 1 – use exact EXPRESS-HDF5 
mapping v. 6. 

All the entities are converted to HDF counterparts 
following closely to what are described in the EXPRESS 
schema definition and in EXPRESS Data as HDF5 
Mapping Specification  Version 0.5 [4].  Each entity with its 
attributes is represented as an HDF compound structure 
with the corresponding fields.   See the column “HDF5 
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Method 1” in Tables 3-7 for the mapping of the five selected entities. 
Table 1 lists the number of instances of these two element representations together with their associated entities. 

 Entity 
# of 

instances for 
CONROD 

# of 
instances for   

HULL 

ALIGNED_SURFACE_3D_ELEMENT_COORDINATE_SYSTEM 0 2 
CARTESIAN_POINT 15,235 5,500 
CHARACTERIZED_OBJECT 1 1 
DATA_ENVIRONMENT 1 1 
DIMENSIONAL_EXPONENTS 2 3 
DIRECTION 236 4 
ELEMENT_MATERIAL 1 1 
FEA_AXIS2_PLACEMENT_3D 15 2 
FEA_LINEAR_ELASTICITY 1 1 
FEA_MASS_DENSITY 1 1 
FEA_MATERIAL_PROPERTY_REPRESENTATION 2 2 
FEA_MODEL_3D 1 1 
FEA_PARAMETRIC_POINT 0 2 
MATERIAL_PROPERTY 1 0 
MEASURE_REPRESENTATION_ITEM 1 1 
NAMED_UNIT 5 6 
NODE 1,260 5,497 
PROPERTY_DEFINITION 0 1 
PROPERTY_DEFINITION_REPRESENTATION 1 1 
REPRESENTATION 3 3 
REPRESENTATION_CONTEXT 2 1 
SURFACE_3D_ELEMENT_DESCRIPTOR 0 2 
SURFACE_3D_ELEMENT_REPRESENTATION 0 5,453 
SURFACE_ELEMENT_PROPERTY 0 1 
SURFACE_SECTION_FIELD_CONSTANT 0 1 
UNCERTAINTY_MEASURE_WITH_UNIT 1 0       
UNIFORM_SURFACE_SECTION 0 1 
VOLUME_3D_ELEMENT_DESCRIPTOR 1 0 
VOLUME_3D_ELEMENT_REPRESENTATION 546 0 

Table 1. Elements converted from CONROD and HULL files to HDF5, including the number of instances for 
each entity. 

Entity  
(Increased 100 times) 

# of 
instances for 
CONROD* 

# of 
instances for   

HULL* 

CARTESIAN_POINT 1,523,500 550,000 
NODE 126,000 549,700 
SURFACE_3D_ELEMENT_REPRESENTATION 0 545,300 
VOLUME_3D_ELEMENT_REPRESENTATION 54,600 0 

Table 2. Elements whose numbers were increased in the larger files, including the number of instances for 
each entity.  

5.2 Method 2 – substitute fixed length for 
variable-length elements 

Adhering to the original STEP schema definition in [4], 
Method 1 uses variable length datatypes for certain 
attributes, such as the name attributes in Table 3 through 
Table 7.   Because variable length representations in 
HDF5 have a significant overhead, Method 2 stores 
attributes with varying elements as fixed-length arrays in 

HDF5.  This is based on the observation that all 
instantiations for that entity have the same number of 
elements for its variable-length attribute.  See the column 
HDF5 Method 2 in the tables below. 

Changes to the mapping for these STEP entities are 
described below: 
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• CARTESIAN_POINT:  

• name is a variable length string.  Since this 
attribute is at most 12 characters long for all the 
instances of this entity, it is represented as a 
character array of length 12. 

• DIRECTION: 

• name is a variable length string.  Since it is at 
most 12 characters long, it is represented as a 
character array of length 12. 

• NODE: 

• name is a variable length string.  Since this 
attribute is at most 6 characters long for all the 
instances of this entity, it is represented as a 
character array of length 6. 

• items has only one reference to a cartesian_point 
entity for all instances of this entity in both 
collection set A and B.  It is therefore 
represented as an integer in the HDF compound 
structure for node. 

• SURFACE_3D_ELEMENT_REPRESENTATION:  

• name is a variable length string.  Since this 
attribute is at most 6 characters long for all the 
instances of this entity, it is represented as a 
character array of length 6. 

• node_list has at most 4 references to a node entity 
for all instances of this entity in collection set B.  
It is therefore represented as an integer array of 
4 elements in the HDF5 compound structure 
for surface_3d_element_representation. 

• items has 2 references to 
aligned_surface_3d_element_coordinate_system and 
fea_parametric_point entities for all instances of 
this entity in collection set B. It is therefore 
represented as an integer array of 2 elements in 
the HDF5 compound structure for 
surface_3d_element_representation. 

• VOLUME_3D_ELEMENT_REPRESENTATION: 

• name is a variable length string.  Since it is at 
most 6 characters long, it is represented as a 
character array of length 6. 

• node_list has 10 references to a node entity for all 
instances of this entity in collection set A.  It is 
therefore represented as an integer array of 10 
elements in the HDF5 compound structure for 
volume_3d_element_representation. 

• items has 1 reference to an fea_axis2_placement_3d 
entity for all instances of this entity in collection 
set A.  It is therefore represented as an integer in 
the HDF5 compound structure for 
volume_3d_element_representation. 

5.3 Method 1-A or 2-A – remove repeated values 

The third storage method is implemented together with 
either Method 1 or 2, and is referred to as Method 1-A 
or 2-A respectively.  

This method is based on the observation that some 
references from the following three entities to other entity 
instances are the same for all the instantiations of that 
entity.  These references are therefore stored as metadata 
in the form of HDF attributes associated with the 
corresponding dataset.   See the last column in tables 3-7. 

Changes to the mapping for these STEP entities are 
described below: 

• NODE:  

• context_of_items and model_ref  references are the 
same for all instances of this entity in collection 
set A or B.  They are therefore stored together 
as a compound structure in the form of HDF5 
attribute associated with the NODE dataset. 

• SURFACE_3D_ELEMENT_REPRESENTATION:  

• context_of_items, model_ref, property and material 
references are the same for all instances of this 
entity in collection set B.  They are therefore 
stored together as a compound structure in the 
form of HDF5 attribute associated with the 
surface_3d_element_repreasentation dataset. 

• VOLUME_3D_ELEMENT_REPRESENTATION:  

• context_of_items, model_ref , element_descriptor , and 
material references are the same for all instances 
of this entity in collection set A.  They are 
therefore stored together as a compound 
structure in the form of HDF5 attribute 
associated with the 
volume_3d_element_repreasentation dataset. 

5.4 Summary 

Table 3 through Table 7 summarize the four different 
methods described above. 
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Attribute EXPRESS types 
HDF5 

Method 1  
(direct conversion 
from EXPRESS 

HDF5
Method 2 

(variable length 
elements stored as 

HDF 5 
Method 1-A/2-A
(repeated values 
stored as HDF5 

name label (STRING) variable length of 
H5T C S1

ARRAY[12] of H5T_C_S1 Same 

coordinates LIST[1:3] of 
length_measure 

(REAL) 

ARRAY[3] of 
H5T_NATIVE_FLOAT 

ARRAY[3] of 
H5T_NATIVE_FLOAT 

 

Same 

Table 3 Storage Methods for cartesian_point 

 

Attribute EXPRESS types HDF5 
Method 1

HDF5 
Method 2

HDF 5 
Method 1-A/2-A

name label (STRING) variable length of 
H5T C S1

ARRAY[12] of 
H5T C S1

same 

direction_ratios LIST[2:3] of REAL ARRAY[3] of 
H5T NATIVE FLOAT

ARRAY[3] of 
H5T NATIVE FLOAT 

 

Table 4 Storage Methods for direction 

 

Attribute EXPRESS types 
HDF5  

Method 1 
HDF5  

Method 2 
HDF 5  

Method 1-A/2-A

name label (STRING) variable length 
of H5T_C_S1 

ARRAY[6] of 
H5T_C_S1 

 
Same 

items SET [1: ?] of 
representation_item 

(ENTITY) 

variable length  
of 

H5T_NATIVE_INT 

 

H5T_NATIVE_INT 

 

Same 

context_of_items representation_context 
(ENTITY) 

H5T_NATIVE_INT Same HDF5-attribute 

model_ref fea_model (ENTITY) H5T_NATIVE_INT Same HDF5-attribute 

Table 5 Storage Methods for NODE 

 

Attribute EXPRESS types 
HDF5  

Method 1 
HDF5  

Method 2 
HDF 5 
Method  
1-A/2-A 

name label (STRING) variable length of 
H5T_C_S1 

ARRAY[6] of 
H5T_C_S1 

same 

items SET[1:?] of 
representation_item 

(ENTITY) 

variable length of 
H5T_NATIVE_INT  

ARRAY[2] of 

H5T_NATIVE_INT 

same 

context_of_items representation_context 
(ENTITY) 

H5T_NATIVE_INT Same HDF5-
attribute 

node_list LIST[1:?] of 
node_representation 

(ENTITY)

variable length of 
H5T_NATIVE_INT 

ARRAY[4] of 
H5T_NATIVE_INT 

Same 

model_ref fea_model_3d (ENTITY) H5T_NATIVE_INT Same HDF5-
attribute 

element_descrip-
tor 

surface_3d_element_descri
ptor (ENTITY) 

H5T_NATIVE_INT Same same 

property surface_element_property 
(ENTITY) 

H5T_NATIVE_INT Same HDF5-
attribute 

material element_material (ENTITY) H5T_NATIVE_INT Same HDF5-
attribute 

Table 6 Storage methods for SURFACE_3D_ELEMENT_REPRESENTATION 
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Attribute EXPRESS types 
HDF5  

Method 1 
HDF5  

Method 2 
HDF 5  
Method  
1-A/2-A 

name label (STRING) variable length of 
H5T_C_S1 

ARRAY[6] of 
H5T_C_S1 

same 

items SET[1:?] of 
representation_item 

(ENTITY) 

variable length of 
H5T_NATIVE_INT  

H5T_NATIVE_INT same 

context_of_items representation_context 
(ENTITY) 

H5T_NATIVE_INT Same HDF5-
Attribute 

node_list LIST[1:?] of 
node_representation 

(ENTITY) 

variable length of 
H5T_NATIVE_INT 

ARRAY[10] of 
H5T_NATIVE_INT 

Same 

model_ref fea_model_3d (ENTITY) H5T_NATIVE_INT Same HDF5-
attribute 

element_descrip-
tor 

volume_3d_element_descript
or (ENTITY) 

H5T_NATIVE_INT Same HDF5-
attribute 

material element_material (ENTITY) H5T_NATIVE_INT Same HDF5-
attribute 

Table 7 Storage methods for VOLUME_3D_ELEMENT_REPRESENTATION 

5.5 Data compression 

All of the above methods were applied a second time to 
the CONROD and HULL files with compression applied 
to the datasets.  However, only the HDF5 files were 
compressed, not the STEP files.  This requires some 
explanation, as follows. 

No matter what format is used, data compression can be 
beneficial in saving storage space and improving 
transmission time. In comparing a text-based format with 
a binary format, such as STEP with HDF5, there are 
some special factors to consider.    

Formats such as STEP and XML can compress very well, 
but when a STEP or XML file is compressed, it becomes 
difficult to access individual records without 
uncompressing the entire file.  HDF5 avoids this problem 
by individually compressing datasets, and by including 
indexes that tell where the compressed datasets are 
located in the file.  This makes it possible to access data 
by only uncompressing the datasets of interest, not the 

whole file.  Very large arrays in HDF5 can also be broken 
into individually-compressed “chunks”, so that only those 
chunks containing the data records of interest need be 
uncompressed.  

For these reasons, and since our interest is in storing and 
accessing STEP data in which there are very large arrays 
of data, we only consider the case in which we would not 
compress a STEP file, but would compress individual 
objects in an HDF5 file.   

6 Results 
Table 8 shows the results from the study of the original 
CONROD and HULL files, including the sizes of the 
original STEP files, and the sizes of the corresponding 
HDF5 files with and without compression for each 
storage method.  Figures 1 and 2 show the percent space 
savings from using the different HDF5 storage methods. 

 

 

  HDF5 with no compression HDF5 with compression 

Set  
Method 1 

(variable len types) 
Method 2 

(fixed length types) 
Method 1 

(variable len types) 
Method 2 

(fixed length types) 

 STEP Method 
1 

Method 
1A 

Method 
2 

Method 
2A 

Method 
1 

Method 
1A 

Method 
2 

Method 
2A 

CONROD 1,206 1,145 1,126 572 554 785 785 386 386
HULL 1,368 1,739 1,608 663 533 1,057 1,057 307 307

Table 8 File sizes (K) for storage methods 1, 1-A, 2, 2-A.  See Figure 1 and Figure 2. 
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Figure 1. Percent saved between STEP and four 
HDF5 storage methods.  No compression. 
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Figure 2. Percent saved between STEP and four 
HDF5 storage methods.  With compression. 

 
Table 9 shows the results from the study for CONROD* and HULL* (the large versions of the CONROD and HULL 
files), including the sizes of the original STEP files, and the sizes of the corresponding HDF5 files with and without 
compression for each storage method.  

Figures 3 and 4 show the percent space savings from using the different HDF5 storage methods. 

 

  HDF5 with no compression HDF5 with compression 

Set  
Method 1 

(variable len types)
Method 2 

(fixed length types)
Method 1 

(variable len types)
Method 2 

(fixed length types)

 STEP Method 
1 

Method 
1A 

Method 
2 

Method 
2A 

Method 
1 

Method 
1A 

Method 
2 

Method 
2A 

CONROD* 119,179 106,394 104,513 49,689 47,808 77,392 76,158  30,131  30,128  
HULL* 138,545 164,384 151,262 59,202 46,080 96,963 95,674  23,538  23,531  

Table 9. File sizes (K) for storage methods 1, 1-A, 2, 2-A, where high-multiple data are 100 times larger. 
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Figure 3. Percent saved on large files between STEP 
and four HDF5 storage methods.  Certain entity 
instances are increased 100-fold.  No compression. 
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Figure 4. Percent saved on large files between STEP 
and four HDF5 storage methods. Certain entity 
instances are increased 100-fold.  With compression. 
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7 Analysis 
The following observations are made from the resulting 
data: 

• Method 1, which uses variable-length datatypes for 
large volume types such as    
surface_3d_element_representation, is not 
effective, due to the high overhead of variable length 
types in HDF5.  In the HULL collection, the 
uncompressed HDF5 file is actually larger.  Even for 
CONROD, the percent of storage saved by using 
HDF5 is not high. 

• Method 2, which replaces high-overhead variable 
length types with fixed-length types and padding, is a 
much better choice than Method 1.  However, this is 
obtained with the pre-knowledge of the data pattern 
and also with the loss of self-description available 
when storing variable-length elements. 

• Storing the unchanging values as HDF5 attributes, as 
in Method 1-A and 2-A, can sometimes improved 
storage efficiency.  This is demonstrated with the 
small HULL collection, where Method 2-A saved 
10% more than Method 2.  This change seemed to 
be of no help for the compressed datasets, however. 

• For compression, storage using fixed-length arrays as 
in Method 2 is highly beneficial.  The percentage 
saved is at least doubled using Method 2 over 
Method 1.   

• When the files were increased 100-fold in size, the 
same patterns appeared, with HDF5 modestly more 
effective for the large datasets than for the smaller 
ones. 

8 Conclusion and future work 
HDF5 is considered as a binary option to the text-based 
STEP formats, especially as an alternative to large STEP 
files such as those with FEM data that are too large to 
load into memory.  Certain high-frequency entities, such 
as Cartesian points, nodes and element representations, 
can be stored and accessed efficiently in HDF5 by storing 
them as elements of HDF5 datasets. 

This study found that how we choose to store these 
entities in HDF5 can make a notable difference in the 
size of the resulting file.  For those entities that contain 
variable-length components, the recommended mapping 
had been to use HDF5 variable-length datatypes.  This 
study found that the overhead associated with variable-
length datatype storage in HDF5 leads to inefficient 
storage, and when compression is not used, HDF5 files 
were sometimes larger than their STEP counterparts.   

An alternate datatype, which stores variable-length items 
in fixed size datatypes with padding, actually saved space, 
even without compression.  And when compression was 
applied storage savings of greater than 80% could be 
achieved. 

Future work.  These results give confidence space can be 
saved by using HDF5 instead of text formats for high 
volume data.  At the same time, HDF5 should also offer 
benefits when applications need to perform partial access 
on large datasets – that is, when datasets are too large to 
be loaded into a computer’s memory.  It is recommended 
that this assertion be investigated further. 
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